Всплеск тока при включении трансформатора

Обновлено: 30.09.2022

Как выполняется защита силовых трансформаторов

Для силовых трансформаторов с обмоткой высшего напряжения больше 1000 В предусматривается релейная защита от следующих видов повреждении и ненормальных режимов работы:

1) многофазных замыканий в обмотках и на их выводах,

2) внутренних повреждений (витковых замыканий в обмотках и «пожара стали» магнитопровода),

3) однофазных замыканий на землю,

4) сверхтоков в обмотках, обусловленных внешними короткими замыканиями,

5) сверхтоков в обмотках, обусловленных перегрузкой (если она возможна),

6) понижения уровня масла.

При выполнении защит трансформатора необходимо учитывать некоторые особенности его нормальной работы: броски тока намагничивания при включении трансформатора под напряжение, влияние коэффициента трансформации и схем соединения обмоток трансформатора.

Для защиты от многофазных замыканий в обмотках и на выводах трансформаторов мощностью 6300 кВА и выше, работающих одиночно, мощностью 4000 кВА и выше, работающих параллельно, а также мощностью 1000 кВА и выше, если токовая отсечка не обеспечивает необходимой чувствительности, максимальная токовая защита имеет выдержку времени более 0,5 с и отсутствует газовая защита, предусматривается продольная дифференциальная защита с циркулирующими токами, действующая на отключение выключателей силового трансформатора без выдержки времени.

Особенностью дифзащиты трансформаторов по сравнению с дифзащитой генераторов, линий и т. л. является неравенство первичных токов разных обмоток трансформатора и их несовпадение в общем случае по фазе.

Для компенсации сдвига токов по фазе вторичные обмотки трансформаторов тока, установленных со стороны звезды силового трансформатора, соединяют в треугольник, а вторичные обмотки трансформаторов тока, установленных со стороны треугольника силового трансформатора, — в звезду. Компенсация неравенства первичных токов достигается правильным подбором коэффициентов трансформации трансформаторов тока.

Когда нельзя подобрать коэффициент трансформации трансформаторов тока таким образом, чтобы разность вторичных токов в плечах дифзащиты была меньше 10 % (так как трансформаторы тока имеют стандартное значение коэффициента трансформации), при выполнении защиты для компенсации неравенства токов используют дифференциальные реле типа РНТ, реже — выравнивающие трансформаторы и автотрансформаторы.

Если не предусматривается продольная дифференциальная защита (как правило, на одиночно работающих трансформаторах мощностью ниже 6300 кВА и параллельно работающих трансформаторах мощностью ниже 4000 кВА), то в этих случаях со стороны источника питания устанавливается токовая отсечка без выдержки времени, охватывающая часть обмотки трансформатора.

На рабочих и резервных трансформаторах собственных нужд тепловых электростанций применяется продольная дифзащита, при мощности 4000 кВА допускается токовая отсечка.

Как выполняется защита силовых трансформаторов

Наиболее простой схемой выполнения продольной дифзащиты является дифференциальная токовая отсечка , которая применяется в случаях, когда она удовлетворяет требованиям чувствительности. Если это условие не выполняется, в продольной дифзащите используют реле типа РНТ.

Реле РНТ имеют насыщающиеся трансформаторы (НТ) , обеспечивающие снижение токов, обусловленных бросками тока намагничивания, и токов небаланса, возникающих во время переходного процесса при внешних коротких замыканиях, и компенсирующие неравенство вторичных токов трансформаторов тока.

На трансформаторах с регулированием напряжения под нагрузкой или многообмоточных трансформаторах с несколькими питающими обмотками , когда вследствие больших токов небаланса в реле при внешних коротких замыканиях защита с насыщающимися трансформаторами не обеспечивает требуемой чувствительности, предусматривается дифзащита с торможением и установкой реле типа ДЗТ или их заменяющими.

Предварительно защита рассчитывается для случая применения реле без торможения. Если она оказывается недостаточно чувствительной, применяют реле с минимальным числом тормозных обмоток, обеспечивающих требуемую чувствительность. Ток срабатывания продольной дифзащиты должен быть отстроен от токов намагничивания и токов небаланса.

Защита силовых трансформаторов от внутренних повреждений

Для защиты от внутренних повреждений (витковых замыканий в обмотках, сопровождающихся выделением газа) и от понижения уровня масла на трансформаторах мощностью 6300 кВА и выше, а также на трансформаторах мощностью 1000 - 4000 кВА, не имеющих дифзащиты или отсечки, и если максимальная токовая защита имеет выдержку времени 1 с и более, применяется газовая защита с действием на сигнал при слабых и на отключение при интенсивных газообразованиях . Применение газовой защиты является обязательным на внутрицеховых трансформаторах мощностью 630 кВА и выше независимо от наличия других быстродействующих защит.

Газовая защита устанавливается на трансформаторах, автотрансформаторах и реакторах с масляным охлаждением, имеющих расширители, и осуществляется с помощью поплавковых, лопастных и чашечных газовых реле. Газовая защита является единственной защитой трансформаторов от «пожара стали» магнитопровода, возникающего при нарушении изоляции между листами стали.

Допускается действие газовой защиты па сигнал как при слабом, так и при сильном газообразовании на трансформаторах, имеющих дифзащиту или отсечку, не имеющих выключателей, а также на внутрицеховых мощностью 1600 кВА и меньше при наличии защиты от коротких замыканий со стороны источника питания.

Как выполняется защита силовых трансформаторов

Защита трансформаторов от однофазных замыканий на землю

Для защиты от однофазных замыканий на землю повышающих трансформаторов мощностью 1000 кВА и более, присоединенных к сетям с большими токами замыкания на землю, а также на понижающих трансформаторах с заземленной нейтралью предусматривается максимальная токовая защита нулевой последовательности от токов внешних замыканий на землю, действующая на отключение.

В связи с широким применением трансформаторов 6 - 10/0,4 - 0,23 кВ со схемой соединения обмоток треугольник — звезда, имеющих глухозаземленную нейтраль на стороне 0,4 кВ , у которых реактивное и активное сопротивления нулевой последовательности равны сопротивлениям прямой последовательности, токи однофазных коротких замыканий на стороне 0,4 кВ будут равны токам трехфазных коротких замыканий при коротких замыканиях на зажимах трансформатора или вблизи них.

При этих токах может работать максимальная токовая защита, установленная на стороне ВН, с достаточной чувствительностью, и защиту в нейтрали трансформатора допустимо не устанавливать, оставив ее только для защиты трансформатора при схеме блока трансформатор — магистраль при протяженном шинопроводе магистрали. Ток срабатывания реле защиты от однофазных коротких замыканий трансформаторов при коротких замыканиях на стороне 0,4 кВ (защита присоединена к трансформатору тока в пулевом проводе у нейтрали трансформатора) должен составлять для соединения обмоток:

где k н —коэффициент надежности, равный 1,15—1,25; k п — коэффициент, учитывающий перегрузку и равный 1,3 для масляных и 1,4 для сухих трансформаторов при отсутствии расчетных данных, k воз — коэффициент возврата реле, k т.т — коэффициент трансформации трансформатора тока, I ном.т — номинальный ток силового трансформатора.

В сетях с малыми токами замыкания на землю защита от однофазных замыканий на землю с действием на отключение устанавливается на трансформаторах в том случае, если такая защита имеется в сети.

Защита трансформаторов от сверхтоков в обмотках, обусловленных внешними короткими замыканиями

Для защиты понижающих трансформаторов от токов, обусловленных внешними короткими замыканиями, предусматривается максимальная токовая защита без пуска или с пуском от реле минимального напряжения , действующая на отключение выключателя. Вследствие низкой чувствительности максимальная токовая защита без пуска от реле минимального напряжения применяется только на трансформаторах мощностью до 1000 кВА.

Для защиты повышающих трансформаторов от внешних коротких замыканий. применяется максимальная токовая защита с пуском от реле минимального напряжения или токовая защита нулевой последовательности .

Максимальная токовая защита с пуском от реле минимального напряжения для повышающих многообмоточных трансформаторов получается довольно сложной (из-за наличия нескольких комплектов реле минимального напряжения) и недостаточно чувствительной по току. В этом случае применяется токовая защита нулевой последовательности . Последняя рекомендуется на повышающих трансформаторах мощностью 1000 кВА и более с глухозаземленной нейтралью.

Если защита повышающих трансформаторов не обеспечивает требуемой чувствительности, то для защиты трансформаторов допускается использовать токовые реле соответствующей защиты генераторов.

В ряде случаев для защиты мощных трансформаторов применяется токовая защита обратной последовательности, которая легко согласуется с аналогичной защитой генераторов.

На многообмоточных трансформаторах с питанием с нескольких сторон для обеспечения избирательности действия защита выполняется направленной.

Для защиты от перегрузки параллельно работающих нескольких трансформаторов мощностью по 400 кВА и более, а также при раздельной работе и наличии АВР предусматривается однофазная максимальная токовая защита, действующая на сигнал.

На необслуживаемых подстанциях защита может выполняться с действием на автоматическую разгрузку или отключение трансформатора.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

andrey_spb, всё правильно там написано.
Множество раз при мне включали ненагруженные трансформаторы 630 и 1000 кВА (6кВ/0,4кВ).
Вводной по "низкой" вообще был выключен.
Первую секунду-полторы - ужасное затихающее гудение, сходящее на нет, и бросок тока по "высокой".
Железо сердечника насыщается.


Бросок тока по высокой? И чем вы его регистрировали?
Переходные процессы с гудениями наблюдал при питании высокой от длинной ЛЭП. Но тут можно объяснить емкостью проводов, образующей с индуктивностью обмотки колебательный контур. Срабатывание защит при включении трансформаторов на холостую не видел ни разу.

Слышали, читали. Про свободную энергию тоже пишут и даже снимают видео.
Только в серьезной литературе об этом не пишут. Поинтересовался у знакомых прподов в ЛЭТИ почему не пишут. Ответили что лженаучными теориями не занимаются.

Вы это имеете ввиду?

Через четверть периода, когда напряжение достигло максимума, рост тока не прекращается, а продолжается дальше! Ведь напряжение, хоть и уменьшается, но оно есть, и имеет всё тот же знак. Таким образом ток возрастает в течение ПОЛОВИНЫ периода, а не четверти. Стоит ли говорить, что трансформатор не расчитан на такой хамский режим?.

Тут можно сказать даже больше. Трансформатор (данный конкретный экземпляр) не просто не рассчитан на такой режим. Он вообще не рассчитан, а намотан от балды и его зачем то включили в сеть с напряжением не предназначенным для работы этого трансформатора.

Давно уже понятно. Неверие в лженаучные теории в крови. Потомственный энергетик в третьем поколении. Базовое и профильное образование и т.д.
А когда возникают проблемы с трансформатормаи и прочими реактивностями, ищем ответы в коммутационных местах и пречитываем литературы серьезных авторов и практиков.
Например:

К существенно большим перенапряжениям приводит отключение практически неподвижного двигателя. В особо неблагоприятных условиях перенапряжения могут превышать значения 7 Цф при мощности двигателей 100-200 кВт вакуумными выключателями с короткими кабелями. Подобные явления присутствуют и при коммутациях трансформаторов, если они нагружены. При холостом ходе, как было отмечено ранее, уровень перенапряжений может быть в несколько раз выше, чем у электродвигателей.
Иногда при включении вакуумных выключателей наблюдается отскок (дребезг) контактов, что сопровождается перенапряжениями. Природа этих перенапряжений такая же, как и при отключении, но воздействия на изоляцию менее жесткие.
Особенности включения трансформатора на сетевое напряжение связаны, прежде всего, с реальной кривой намагничивания сердечника, вследствие чего возможны режимы его насыщения, и, как следствие, кратное увеличение тока намагничивания. Затухание свободного тока вызывается рассеянием или поглощением энергии магнитного поля свободного потока не только в активном сопротивлении обмотки, но и в стали сердечника вследствие потерь на вихревые токи. Это приводит
к уменьшению времени затухания этого тока. Для мощных трансформаторов характерны низкие значения сопротивления обмоток, поэтому основным демпфирующим фактором в них являются «стальные» потери. Время установления тока холостого хода может составлять несколько секунд.

Дело было не в бобине Контакты прыг скок, прыг скок

Коммутация электрооборудования включает в себя процессы включения и отключения. Необходимо отметить, что в процессе включения коммутация фаз происходит не одновременно. Перед замыканием контактов возникает пробой уменьшающихся между ними промежутков. Очередность включения контактов зависит от конструкции выключателя и его настройки. Таким образом, характеристика неодновременности включения полюсов выключателя имеет две составляющие - постоянную и случайного характера. В момент замыкания первого контакта на электродвигатель или трансформатор падает волна напряжения, фронт которой нарастает приблизительно по экспоненте [3, 5]. В результате падения волны на обмотку и отражения ее от стыка «кабель-обмотка» на первой включенной фазе появляются максимальные перенапряжения. Перенапряжения на двух других фазах представляют собой свободные колебания «около» напряжения промышленной частоты. Частота этих колебаний зависит от контура «кабель-нагрузка».

Да и так, чисто логически. При включении обслуживаемого мною транса начала срабатывать защита(внезапно! ). Которая до этого не срабатывала. И я начну начальству бред нести про "ток намагничивания". Да меня же с работы выгонят! Я уж лучше коммутационный прибор заменю или отремнотирую.

Особенности включения трансформатора на сетевое напряжение связаны, прежде всего, с реальной кривой намагничивания сердечника, вследствие чего возможны режимы его насыщения , и, как следствие, кратное увеличение тока намагничивания .

Вторая цитата - вообще про коммутационные перенапряжения .
При чём тут ток насыщения сердечника?

Дерёте цитаты из контекста.

Если начальник эксплуатации (либо ответственный за электрохозяйство) грамотный - всё будет нормально.

А это уже вопросы к службе РЗиА.
Либо пусть эксплуатация снимает диаграммы одновременности с выключателя, чистит ПБВ, а лаборатория испытывает трансформатор и замеряет омическое по высокой.

Особенности включения трансформатора на сетевое напряжение связаны, прежде всего, с реальной кривой намагничивания сердечника, вследствие чего возможны режимы его насыщения , и, как следствие, кратное увеличение тока намагничивания .

Вторая цитата - вообще про коммутационные перенапряжения .
При чём тут ток насыщения сердечника?

Дерёте цитаты из контекста.

Если начальник эксплуатации (либо ответственный за электрохозяйство) грамотный - всё будет нормально.

А это уже вопросы к службе РЗиА.
Либо пусть эксплуатация снимает диаграммы одновременности с выключателя, чистит ПБВ, а лаборатория испытывает трансформатор и замеряет омическое по высокой.


Как это относится к включению? Это так относится к включению, что "включение" в реальной жизни выглядит так: включение-выключение-включение-выключение.
Называется дребезг. Плюс неодновременность первого включения по фазам. При отключении, которое присутствует при "включении" у индуктивности возникают выбросы ЭДС, в сотни Кв запросто. А там уже и насыщения и т.д. Читали же контекст из которого я "драл" цитаты?
А начальство у нас грамотное к сожалению. У кого малограмотное- тому повезло. Лично у меня разводить вместо работы дискуссии о "бросках тока" не получится- уволят из за профнепригодности.

Часовой пояс: UTC + 3 часа

Кто сейчас на форуме



Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
Русская поддержка phpBB
Extended by Karma MOD © 2007—2012 m157y
Extended by Topic Tags MOD © 2012 m157y

Ток включения трансформатора

Ток включения трансформатора3

При включении трансформатора в сеть толчком на полное напряжение в трансформаторе могут возникнуть весьма большие броски тока намагничивания , превышающие в десятки раз ток намагничивания (холостого хода) при нормальной работе.

Так как ток намагничивания в трансформаторе не превосходит нескольких процентов номинального тока трансформатора, то максимальные значения бросков токов намагничивания при включении трансформатора толчком превышают номинальный ток не более чем в 6 - 8 раз.

С точки зрения динамической устойчивости обмоток трансформатора указанные броски тока намагничивания для трансформатора безопасны, так как обмотка рассчитывается на большие кратности токов, имеющие место при коротких замыканиях за трансформатором. Защита же трансформатора отстраивается от упомянутых бросков тока намагничивания путем применения соответствующих устройств (насыщающихся промежуточных трансформаторов и др.).

При включении обмотки на полное напряжение в обмотке могут возникнуть перенапряжения вследствие неравномерного распределения напряжения по обмотке и возникновения переходных волновых процессов. Но указанные перенапряжения для обмоток трансформатора безопасны, так как изоляция их рассчитывается на более значительные атмосферные (грозовые) перенапряжения.

Поэтому включение всех трансформаторов в сеть толчком на полное напряжение является совершенно безопасным, оно производится без предварительного подогрева трансформатора вне зависимости от времени года и температуры масла трансформатора.

Указанное распространяется также на включение в сеть трансформатора после монтажа или капитального ремонта, так как опыт показал, что при включении толчком и наличии повреждения трансформатор своевременно отключается защитой и размеры повреждения при этом бывают не больше, чем при включении трансформатора путем медленного подъема напряжения с нуля, что вызывает значительные трудности в условиях эксплуатации, а зачастую невозможно.

Трансформаторы должны включаться толчком на полное напряжение со стороны питания, где должна быть установлена соответствующая защита.

Испытание включением толчком на номинальное напряжение

При 3—5-кратном включении не должны иметь место явления, указывающие на неудовлетворительное состояние трансформатора. Этим опытом проверяется также отстройка максимальной токовой защиты от бросков тока намагничивания трансформатора. Физически возникновение сверхтока объясняется следующим. При включении трансформатора возникает переходный процесс, в течение которого магнитный поток можно рассматривать как сумму двух составляющих: периодической с неизменной амплитудой и медленно затухающей апериодической.

В момент включения эти составляющие равны по значению и противоположны по знаку, сумма их равна нулю. Когда же периодическая составляющая приобретает ту же полярность, что и апериодическая, они суммируются арифметически. Наибольшее возможное значение этой суммы близко к двукратной амплитуде периодической составляющей. Вследствие глубокого насыщения стали магнитопровода бросок тока холостого хода может превысить установившееся значение его в десятки и сотни раз и в 4—6 раз — номинальный ток.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Признаки неисправности работы силовых трансформаторов при эксплуатации

Необходимо проверить нагрузку трансформатора. У трансформаторов с постоянной нагрузкой перегрузку можно установить по амперметрам, у трансформаторов с неравномерным графиком нагрузки – путем снятия суточного графика по току.

Следует также иметь в виду, что трансформаторы допускают нормальные перегрузки, зависящие от графика нагрузки, температуры окружающей среды и недогрузки в летнее время. Кроме того, допускаются аварийные перегрузки трансформаторов независимо от предшествующей нагрузки и температуры охлаждающей среды.

Допустимые превышения температуры отдельных частей трансформатора и масла над температурой охлаждающей среды, воздуха или воды не должны превышать нормативных значений. Если указанные мероприятия не дают должного эффекта, необходимо разгрузить трансформатор, включив на параллельную работу еще один трансформатор или отключив менее ответственных потребителей.

Высокая температура трансформаторного помещения. Необходимо измерить температуру воздуха в трансформаторном помещении на расстоянии 1,5–2 м от бака трансформатора на середине его высоты. Если эта температура более чем на 8–10 °С превышает температуру наружного воздуха, необходимо улучшить вентиляцию трансформаторного помещения.

Низкий уровень масла в трансформаторе. В данном случае обнаженная часть обмотки и активной стали сильно перегревается; убедившись в отсутствии течи масла из бака, необходимо долить масло до нормального уровня.

Внутренние повреждения трансформатора: замыкания между витками, фазами; образование короткозамкнутых контуров из-за повреждения изоляции болтов (шпилек), стягивающих активную сталь трансформатора; замыкания между листами активной стали трансформатора.

Все эти недостатки при незначительных короткозамкнутых контурах, несмотря на высокую местную температуру, обычно не всегда дают заметное повышение общей температуры масла, и развитие этих повреждений ведет к быстрому росту температуры масла.

Признаки неисправности работы силовых трансформаторов при эксплуатации

Ненормальное гудение в трансформаторе

Ослабла прессовка шихтованного магнитопровода трансформатора. Необходимо подтянуть прессующие болты.

Нарушена прессовка стыков в стыковом магнитопроводе трансформатора. Под влиянием вибрации магнитопровода ослабла затяжка вертикальных болтов, стягивающих стержни с ярмами, это изменило зазоры в стыках, что и вызвало усиленное гудение. Необходимо перепрессовать магнитопровод, заменив прокладки в верхних и нижних стыках листов магнитопровода.

Вибрируют крайние листы магнитопровода трансформатора. Необходимо расклинить листы электрокартоном.

Ослабли болты, крепящие крышку трансформатора, и прочие детали. Необходимо проверить затяжку всех болтов.

Трансформатор перегружен или нагрузка фаз отличается значительной несимметричностью. Необходимо устранить пере-грузку трансформатора или уменьшить несимметрию нагрузки потребителей.

Возникают замыкания между фазами и витками. Необходимо отремонтировать обмотку.

Трансформатор работает при повышенном напряжении. Необходимо установить переключатель напряжения (при его нали-чии) в положение, соответствующее повышенному напряжению.

Потрескивание внутри трансформатора

Перекрытие (но не пробой) между обмоткой или отводами на корпус вследствие перенапряжений. Необходимо осмотреть и отремонтировать обмотку.

Обрыв заземления. Как известно, активная сталь и все прочие детали магнитопровода в трансформаторе заземляются для отвода в землю статических зарядов, появляющихся на этих частях, так как обмотка и металлические части магнитопровода – это, по существу, – обкладки конденсатора.

При обрыве заземления могут происходить разряды обмотки или ее отводов на корпус, что воспринимается как треск внутри трансформатора.

Необходимо восстановить заземление до того уровня, на котором оно было выполнено заводом-изготовителем: присоединить заземление в тех же точках и с той же стороны трансформатора, т. е. со стороны выводов обмотки низшего напряжения. Однако при неправильном восстановлении заземления в трансформаторе могут возникнуть короткозамкнутые контуры, в которых могут появиться циркулирующие токи.

Признаки неисправности работы силовых трансформаторов при эксплуатации

Пробой обмоток трансформатора и обрыв в них

Пробой обмоток на корпус между обмотками высшего и низшего напряжения или между фазами.

Причины пробоя обмоток трансформатора:

а) возникли перенапряжения, связанные с грозовыми явлениями, аварийными или коммутационными процессами;

б) резко ухудшилось качество масла (увлажнение, загрязнение и пр.);

в) понизился уровень масла;

г) изоляция подверглась естественному износу (старению);

д) при внешних коротких замыканий, а также при замыканиях внутри трансформатора возникли электродинамические усилия.

Необходимо подчеркнуть, что при перенапряжениях могут происходить не пробои изоляции, а только перекрытия между обмотками, фазами или между обмоткой и корпусом трансформатора. В результате перекрытия обычно происходит лишь оплавление поверхности нескольких витков и появляется копоть на соседних витках, полное же соединение между витками, фазами или же между обмоткой и корпусом трансформатора отсутствует.

Пробой изоляции обмотки трансформатора можно обнаружить мегомметром. Однако в некоторых случаях, когда в результате перенапряжений на обмотке возникают оголенные места в виде точек (точечный разряд), выявить дефект можно, только испытав трансформатор приложенным или индуктированным напряжением. Необходимо отремонтировать обмотку, а в случае необходимости заменить трансформаторное масло.

Обрывы в обмотках трансформатора. В результате обрыва или плохого контакта происходит оплавление или выгорание части проводника. Дефект обнаруживается по выделению горючего газа в газовом реле и работе реле на сигнал или отключение.

Причины обрывы в обмотках трансформатора:

а) плохо выполнена пайка обмотки;

б) возникли повреждения проводов, соединяющих концы обмоток с выводами;

в) при коротких замыканиях внутри и вне трансформатора развиваются электродина-мические усилия. Обрыв можно обнаружить по показаниям амперметров или с помощью мегомметра.

При соединении обмоток трансформатора треугольником нахождение фазы, имеющей обрыв, производится путем разъединения обмотки в одной точке и испытания каждой фазы трансформатора в отдельности. Обрыв чаще всего происходит в местах изгиба кольца под болт.

Необходимо отремонтировать обмотку.

Чтобы предотвратить повторение обрыва в отводах обмотки трансформатора, следует отвод, выполненный круглым проводом, заменить гибким соединением – демпфером, состоящим из набора тонких медных лент сечением, равным сечению провода.

Признаки неисправности работы силовых трансформаторов при эксплуатации

Работа газовой защиты трансформатора

Газовая защита от внутренних повреждений или ненормального режима работы трансформатора в зависимости от интенсивности газообразования срабатывает или на сигнал, или на отключение, или одновременно на то и другое.

Газовая защита сработала на сигнал.

Причины срабатывания газовой защиты трансформатора:

а) произошли небольшие внутренние повреждения трансформатора, что привело к слабому газообразованию;

б) при заливке или очистке масла в трансформатор попал воздух;

в) медленно понижается уровень масла из-за снижения температуры окружающей среды или вследствие течи масла из бака.

Газовая защита трансформатора сработала на сигнал и на отключение или только на отключение. Это вызывается внутренними повреждениями трансформатора и другими причинами, сопровождаемыми сильным газообразованием:

а) произошло замыкание между витками первичной или вторичной обмоток трансформатора. Данное повреждение может быть вызвано недостаточной изоляцией переходных соединений, продавливанием изоляции витков при опрессовке или из-за заусенцев на меди витка, механическими повреждениями изоляции, естественным износом, перенапряжениями, электродинамическими усилиями при коротких замыканиях, обнажением обмотки вследствие снижения уровня масла.

По замкнутым накоротко виткам проходит ток большой силы, причем ток в фазе может лишь незначительно возрасти; изоляция витков быстро сгорает, могут выгорать сами витки, причем возможно разрушение и соседних витков. При развитии авария может перейти в междуфазное короткое замыкание.

Если число замкнутых витков значительно, то в короткий промежуток времени масло сильно нагревается и может закипеть. При отсутствии газового реле может произойти выброс масла и дыма через предохранительную пробку расширителя.

Замыкание между витками сопровождается не только ненормальным нагревом масла и некоторым увеличением тока со стороны питания, но и уменьшением сопротивления фазы, где возникло замы-кание;

б) произошло междуфазное короткое замыкание, вызванное теми же причинами, что и пробой изоляции, и протекающее бурно. При этом может произойти выброс масла из расширителя или через диафрагму предохранительной трубы, которая устанавливается в трансформаторах мощностью 1000 кВА и выше;

в) образовался короткозамкнутый контур из-за повреждения изоляции болтов, стягивающих активную сталь трансформатора. Короткозамкнутый контур сильно нагревается и вызывает перегрев масла. Болт и близлежащие листы активной стали могут быть разрушены. В трансформаторах со стыковыми магнитопроводами короткозамкнутый контур может получиться при соприкосновении с ярмами накладок, прессующих стержни;

г) произошло замыкание между листами активной стали вследствие повреждения междулистовой изоляции в результате естественного износа (старения) изоляции. Вызванные таким повреждением изоляции значительные вихревые токи способствуют большим местным перегревам активной стали, что с течением времени может привести к местному выгоранию стали (пожару в железе). В стыковых магнитопроводах может произойти сильное нагревание стыков вихревыми токами из-за повреждения прокладок в них;

д) значительно снизился уровень масла в трансформаторе или из масла интенсивно выделяется воздух вследствие резкого похолодания или же после ремонта (заливка свежего масла, его очистка центрифугой и пр.).

Необходимо подчеркнуть, что в практике отмечены также случаи ложной работы газовой защиты из-за неисправности цепей вторичной коммутации защиты. Например, работа газовой защиты трансформатора может быть вызвана различными причинами. Поэтому перед тем как приступить к устранению неисправности, необходимо точно установить причину, вызвавшую срабатывание газовой защиты. Для этого необходимо выяснить, какая из защит (релейных) сработала, произвести исследование газов, скопившихся в газовом реле, и определить их горючесть, цвет, количество и химический состав.

Горючесть газа свидетельствует о наличии внутреннего повреждения. Если газы бесцветны и не горят, то причиной действия реле является выделившийся из масла воздух. Цвет выделившегося газа позволяет судить о характере повреждения; бело-серый цвет свидетельствует о повреждении бумаги или картона, желтый – дерева, черный – масла. Но так как окраска газа может через некоторое время исчезнуть, то его цвет следует определить тут же при его появлении. Снижение температуры вспышки масла также свидетельствует о наличии внутреннего повреждения. Если причиной действия газовой защиты было выделение воздуха, то его необходимо выпустить из реле. При снижении уровня масло следует долить, отключить газовую защиту от действия на отключение.

При повреждении обмотки необходимо найти место повреждения и произвести соответствующий ремонт. Для этого необходимо вскрыть трансформатор и извлечь сердечник. Замкнутые накоротко витки обмотки можно найти при включении трансформатора со стороны низшего напряжения на пониженное напряжение. Короткозамкнутый контур будет сильно разогрет, и из обмотки появится дым. Этим способом могут быть найдены и другие короткозамкнутые контуры.

Поврежденные места в активной стали могут быть найдены при холостом ходе трансформатора (при вынутом сердечнике). Эти места будут сильно нагреты. При этом испытании напряжение подводят к обмотке низшего напряжения и поднимают с нуля; обмотка высшего напряжения должна быть предварительно разъединена в нескольких местах во избежание пробоя обмотки (из-за отсутствия масла).

Замыкание между листами активной стали трансформатора и ее оплавление следует устранить перешихтовкой поврежденной части магнитопровода с заменой междулистовой изоляции. Поврежденную изоляцию в стыках магнитопровода заменяют новой, состоящей из листов асбеста толщиной 0,8–1 мм, пропитанных глифталевым лаком. Сверху и снизу прокладывают кабельную бумагу толщиной 0,07–0,1 мм.

Признаки неисправности работы силовых трансформаторов при эксплуатации

Ненормальное вторичное напряжение трансформатора

Первичные напряжения трансформатора одинаковы, а вторичные напряжения одинаковы при холостом ходе, но сильно разнятся при нагрузке.

а) плохой контакт в соединении одного зажима или внутри обмотки одной фазы;

б) обрыв первичной обмотки трансформатора стержневого типа, соединенного по схеме треугольник – звезда или треугольник – треугольник.

Первичные напряжения трансформатора одинаковы, а вторичные напряжения неодинаковы при холостом ходе и при нагрузке.

а) перепутаны начала и конец обмотки одной фазы вторичной обмотки при соединении звездой;

б) обрыв в первичной обмотке трансформатора, соединенного по схеме звезда – звезда. В этом случае три линейных вторичных напряжения не равны нулю;

в) обрыв во вторичной обмотке трансформатора при соединении его по схеме звезда – звезда или треугольник – звезда. В этом случае только одно линейное напряжение не равно нулю, а два других линейных напряжения равны нулю.

При схеме соединения треугольник–треугольник обрыв его вторичной цепи можно установить измерением сопротивлений или по нагреву обмоток: обмотка фазы, имеющей обрыв, будет холодной из-за отсутствия в ней тока. В последнем случае возможна временная эксплуатация трансформатора при токовой нагрузке вторичной обмотки, составляющей 58 % номинальной. Для устранения неисправностей, вызывающих нарушения симметрии вторичного напряжения трансформатора, необходим ремонт обмоток.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Кривая БНТ классического типа

Вопрос-ответ

В энергосистеме при подключении силового трансформатора к напряжению, а также при восстановлении рабочих параметров цепи после отключения оборудования на режиме короткого замыкания в питающей устройство обмотке возникает резкий толчок. Это явление получило название тока намагничивания трансформатора. Он имеет затухающий характер, а его максимальная величина превышает номинальный параметр, что необходимо учитывать при проектировании схем защиты оборудования.

Понятие намагничивающего тока

Внезапное возрастание, то есть бросок тока намагничивания (БТН), объясняется насыщением сердечника магнитной индукцией. Трансформаторы динамически устойчивы к броскам благодаря изготовлению обмоток с учетом больших по кратности токов, как правило, возникающих при замыканиях накоротко. В среднем намагничивающий ток превышает номинальное значение прибора в 6-8 раз.

Рис. 1. Условия появления БТН

В режиме короткого замыкания напряжение силового агрегата характеризуется предельным понижением до нуля, а после отключения зоны повреждения устанавливается на зажимах устройства скачкообразно.

Восстановление магнитного потока происходит неравномерно и не сразу, что обуславливает возникновение переходного процесса, в течение которого образуются два потока – установившийся ФУ и свободный ФСВ. Для определения общего значения используется формула:

В точке отсчета, характеризующей начальный момент времени при t = 0, ФТО также приравнивается к нулю, поэтому справедливым представляется равенство ФСВ = – ФУ. Знаки полярности магнитных потоков совпадают во втором полупериоде, и, соответственно, результирующая величина достигает пикового максимума (ФТмакс).

Рис. 2. Магнитные потоки в сердечнике под нагрузкой

Схематически наблюдается отставание ФУ от UТ на 90 градусов, что говорит о зависимости ФСВ и ФТмакс от фазы напряжения. Данные величины достигают наибольших значений при включении – в момент прохождения UТ через ноль. Если не брать во внимание постепенное затухание, ФТмакс ≈ 2ФУ. Но пиковая величина потока может быть и выше, когда в толще сердечника присутствует остаточное намагничивание Фост, по знаку совпадающее с ФСВ.

Сердечник насыщается при значениях потоков, приближенных к 2ФУ, вызывая резкий бросок Iнам. Ток намагничивания образуется только в той обмотке цепи, на которую подается напряжение при включении. Он преобразуется через защитное устройство и поступает на реле, заставляя его срабатывать при соблюдении неравенства Iнам > Iс.з..

Почему происходит бросок при включении

Кратковременный скачок характеризуется броском намагничивающего тока трансформатора (БТН). Его значения на одном и том же приборе могут отличаться по величине при разных включениях. Причиной образования БТН в силовых устройствах является внезапное изменение уровня напряжения намагничивания. Помимо нагрузки, передаваемой на обмотку, скачок может быть вызван и другими причинами:

  • внешнее короткое замыкание (КЗ);
  • восстановление напряжения в контуре;
  • преобразование КЗ;
  • несинхронное подключение генератора.

Ток намагничивания вносит дисбаланс на выводах трансформатора. Защита прибора воспринимает БТН как дифференциальный ток. Но чтобы она корректно выполняла свое назначение, система должна эффективно функционировать и отстраиваться с учетом БТН путем включения в цепь таких вспомогательных устройств, как промежуточные трансформаторы.

Чтобы скачки не повлияли на эксплуатационный ресурс службы агрегата, нежелательно допускать отключение трансформатора в результате бросков.

При включении обмотки на полную нагрузку вследствие асинхронного распределения мощности и переходных волновых процессов возникает высокое перенапряжение, способное вызвать внутреннее короткое замыкание.

Важно! Перенапряжения по причине БТН являются безопасными только при правильной организации дифференциальной защиты системы.

Как происходит процесс

При подаче нагрузки намагничивание прибора из-за включения рассматривается как негативное явление, способное спровоцировать БТН максимальной амплитуды. При отключении ток намагничивания сокращается до нулевой отметки, а магнитная индукция корректируется в зависимости от степени намагничивания стального сердечника, в результате чего в магнитопроводе сохраняется остаточная индукция.

Если через время повторить включение токопреобразующего устройства под напряжение, подчиненное синусоидальному закону изменения, магнитная индукция меняется со смещением остаточной величины до 90% от номинального значения. В результате возникает высокая амплитуда намагничивания и изменение формы кривой.

Рис. 3. Кривая БНТ классического типа

Уровень намагничивающего тока затухает на десятые доли секунды, но полное «сглаживание» кривой наступает в течение нескольких секунд, а при определенных условиях – через несколько минут. Длительность затухания апериодической составляющей осциллограммы БТН обусловлена высокой амплитудой тока в начальный (нулевой) момент времени и содержанием разных гармоник. Пиковая величина зависит от нагрузочного напряжения и его параметров, а также от значения и полярности остаточного магнитного потока в сердечнике.

Пик тока может быть выше номинального значения для высокомощных агрегатов в 10-15 раз, а для приборов мощностью (

Способы блокировки на вторичной обмотке

Исключить ложные срабатывания на БТН можно несколькими способами. Опытным путем проверена эффективность метода замедления защиты (недостаток – потеря быстродействия), торможения, блокировки, которые не дали хороших результатов. Наиболее рациональными способами отстройки от токов намагничивания являются:

  1. Использование быстронасыщающихся трансформаторов.
  2. Отстройка дифференциальной отсечки.

Методы на практике доказали свою эффективность, отличаются высокой надежностью, простотой и сохранением важнейшего параметра защиты – быстродействия.

Читайте также: