Автоматизация парового котла схема

Обновлено: 03.12.2022

Одной из самых актуальных проблем современной цивилизации, и в то же самое время одной из самых древних, получивших практические решения, является проблема автоматизации. Самострелы и ловушки древних охотников – это примеры автоматических устройств, срабатывающих так, как надо тогда, когда надо.

Всевозможные демонстрации в древнеегипетских храмах срабатывали без участия человека, а лишь тогда, когда наступала соответствующая ситуация. Массовое внедрение автоматики в современную повседневную жизнь людей лишь подтверждает актуальность этой проблемы в наше время.
Особенно это заметно в производственной деятельности человека. Непрерывный рост единичной мощности агрегатов, увеличение их производительности требуют более оперативного и более правильного принятия решений.

Число этих решений в единицу времени непрерывно возрастает, ответственность за их правильность также растёт. Психофизиологические возможности человека уже не позволяют ему справляться с обработкой возросшего потока информации.



На помощь приходит новейшая вычислительная техника и эффективные методы теории управления. Всё более усложнённые технологические и теплотехнические процессы требуют повышения быстродействия технических средств автоматики. Одновременно растёт цена отказа, и растут требования к надёжности и живучести техники.
Прогресс в части средств автоматизации тесно связан с изменениями в элементной базе вычислительной техники. Сейчас практически все приборы строятся на основе микропроцессоров.

Это позволяет обрабатывать более сложные алгоритмы, повышать точность измерения технологических параметров, нагружать отдельные приборы ранее не свойственными им функциями. И, самое главное, обмениваться информацией между собой, работая, как единая система управления.

Средства автоматизации для котельных

Технические средства автоматизации:

  • датчики параметров технологического процесса;
  • исполнительные механизмы, перемещающие по командам в нужном направлении регулирующие органы;
  • управляющая техника, обрабатывающая в соответствии с заложенными в неё алгоритмами и программами информацию от датчиков и формирующая команды исполнительным механизмам;
  • приборы для выбора режимов управления и для дистанционного управления исполнительными механизмами;
  • средства отображения и представления информации оперативному персоналу;
  • устройства для документирования и архивирования технологической информации;
  • средства коллективного представления информации.

Вся эта техника за вторую половину прошлого столетия претерпела революционные изменения, не в последнюю очередь, благодаря достижениям советской науки.
Так, например, приборы манометрического ряда, широко применяемые при измерениях давления, расхода, скорости и уровня жидкостей и газов, а также при измерениях силы и массы, поменяли физический принцип чувствительного элемента.

Вместо мембраны, прогибающейся под действием сила и перемещающей шток электромеханического преобразователя, стали использовать тензометрический способ.
Его суть в том, что некоторые материалы при механическом воздействии на них меняют свои электрические параметры. Чувствительная измерительная схема улавливает эти изменения, а вычислительное устройство, встроенное в прибор, переводит их в величину технологического параметра.


Приборы стали компактней, надёжней, точнее. И технологичней в производстве. Современные исполнительные механизмы принимают не только команды «включить» и «выключить», как было много лет. Они могут принимать команды в цифровом коде, самостоятельно расшифровывать их, исполнять и предавать отчёт о своих действиях и своём состоянии.
Управляющая техника прошла путь от ламповых регуляторов и релейно-контактных схем до микропроцессорных регулирующих, логических и демонстрационных контроллеров.

Испытания первого советского регулирующего микропроцессорного контроллера разработки НИИТеплоприбор были проведены в январе 1980 года на учебной ТЭЦ Московского энергетического института. ТЭЦ работает в составе Мосэнерго. По первым слогам трёх слов названия изделие назвали «Ремиконт». Через пять лет провели более масштабные промышленные испытания Ремиконтов на трёх мощных промышленных объектах. И с этого момента в новые АСУ ТП по всей стране и в зарубежные проекты закладывались только микропроцессорные контроллеры.

За рубежом применение подобных контроллеров в системах автоматизации различных объектов началось чуть раньше.
Микропроцессорный контроллер – это вычислительное устройство, сконструированное специально для управления технологическим объектом и расположенным в непосредственной от него близости.

Контроллер состоит из следующих блоков и устройств:

  • блок питания;
  • вычислитель;
  • блок ввода аналоговых сигналов разных номиналов с гальваническим разделением;
  • устройство ввода дискретных сигналов активных (в виде напряжения) и пассивных (в виде сухого контакта);
  • блок вывода аналоговых сигналов разных номиналов с гальваническим разделением;
  • устройство вывода дискретных сигналов активных и пассивных;
  • прибор интерфейсной связи для подключения контроллера к системному информационному полю.

Блоки ввода и вывода сигналов – блоки группы УСО (устройств связи с объектом) – все многоканальные, имеют от 8 до 16 каналов. На конкретную задачу контролер собирается методом проектной компоновки. Состав и количество блоков УСО выбирается исходя из количества соответствующих сигналов в системе.
В блоке вычислителя находится процессор, оперативная память (ОЗУ) и постоянная память (ПЗУ). В ПЗУ записана библиотека алгоритмов. Её состав охватывает практически все используемые в подобных системах задачи управления – регулирования, арифметических вычислений, динамических преобразований, логических действий.


Программирование контроллеров ведётся методом технологического программирования. Для современных моделей контроллеров этот метод представляет собой сборку функциональной схемы задачи управления на экране монитора.

После простейшей проверки на отсутствие ошибок схема-программа загружается в оперативную память контроллера. Интуитивная доступность метода для традиционных автоматчиков способствовала быстрому и широкому распространению Ремиконтов.

Автоматизированные тепловые станции

В 1992 году организация, управляющая московской коммунальной энергетикой – МОСТЕПЛОЭНЕРГО – приняла решение на одной из своих новостроек внедрить современную АСУ ТП. Была выбрана районная тепловая станция РТС «ПЕНЯГИНО». Первая очередь станции строилась в составе четырёх котлов типа КВГМ-100.
В это время развитие Ремиконтов привело к появлению программно-технического комплекса ПТК КВИНТ.В состав комплекса кроме самих Ремиконтов входила операторская станция на базе персональной ЭВМ с полным программным обеспечением, пакет программ системы автоматизированного проектирования САПР.

Функции АСУ ТП районной тепловой станции:

  • полностью автоматический пуск котла из холодного состояния до выхода на рабочий режим путём кликания на экране монитора кнопки «ПУСК»;
  • поддержание температуры выходной воды в соответствии с температурным графиком;
  • управление расходом питательной воды с учётом подпитки;
  • технологические защиты с отключением подачи топлива;
  • контроль всех теплотехнических параметров и представление их оператору на экране персональной ЭВМ;
  • контроль состояния агрегатов и механизмов – «ВКЛЮЧЕН» или «ВЫКЛЮЧЕН»;
  • дистанционное управление исполнительными механизмами с экрана монитора и выбор режима управления – ручной, дистанционный или автоматический;
  • информирование оператора о нарушениях в работе контроллеров;
  • связь с диспетчером района по цифровому информационному каналу.

Техническая часть системы была скомпонована в четырёх шкафах – по одному на каждый котёл. В каждом шкафу установлены четыре контроллера в каркасно-модульном исполнении.

Задачи между контроллерами распределены таким образом:

Контроллер №1 выполнял все операции по пуску котла. В соответствии с алгоритмом пуска, который был предложен Теплоэнергоремонтом:

  • контролер включает дымосос и вентилирует топку и дымоходы;
  • включает вентилятор подачи воздуха;
  • включает насосы подачи воды;
  • подключает газ на розжиг каждой горелки;
  • по контролю наличия пламени открывает основной газ на горелки.

Контроллер №2 выполнен в дублированном варианте. Если во время пуска котла сбой техники не страшен, так как можно остановить программу и начать всё сначала, то второй контроллер ведёт основной режим в течении длительного времени.

Особая ответственность на нём в холодное время года. При автоматической диагностике нештатной ситуации в котельной происходит автоматическое безударное переключение с основного контроллера на резервный. На этом же контроллере организованы технологические защиты.
Контроллер №3 предназначен для выполнения менее ответственных функций. При его отказе можно вызвать ремонтника и некоторое время переждать. На этом же контроллере запрограммирована модель котла.

С её помощью проводится предпусковая проверка работоспособности всей программы управления. Её же используют при обучении оперативного персонала.
Работы по созданию головных АСУ ТП московских РТС ПЕНЯГИНО, КОСИНО-ЖУЛЕБИНО, БУТОВО, ЗЕЛЕНОГРАД проводил коллектив в составе МОСПРОМПРОЕКТ (проектные работы), ТЕПЛОЭНЕРГОРЕМОНТ (алгоритмы управления), НИИТеплоприбор (микропроцессорная центральная часть системы).

Перспективы

Развитие и совершенствование элементной базы позволяет снижать габариты технических средств автоматизации, их энергоёмкость. Расширяются функциональные возможности.

Наличие собственного вычислителя в каждом полевом устройстве позволяет выводить от него информацию в систему, а ему получать команды из любой точки системы. Технология полевой шины позволяет существенно повысить живучесть системы, упростить процессы наладки.

Обзор регламентации автоматизации производственных процессов, выполняемых на котельных установках. Изучение средств автоматического контроля. Расчет параметров ротаметра и резисторов измерительной схемы. Анализ технических условий для оборудования.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 04.10.2013
Размер файла 176,4 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Введение

Автоматизация - это применение комплекса средств, позволяющих осуществлять производственные процессы без непосредственного участия человека, но под его контролем. Автоматизация производственных процессов приводит к увеличению выпуска, снижению себестоимости и улучшению качества продукции, уменьшает численность обслуживающего персонала, повышает надежность и долговечность машин, дает экономию материалов, улучшает условия труда и техники безопасности.

Автоматизация освобождает человека от необходимости непосредственного управления механизмами. В автоматизированном процессе производства роль человека сводится к наладке, регулировке, обслуживании средств автоматизации и наблюдению за их действием. Если автоматизация облегчает физический труд человека, то автоматизация имеет цель облегчить так же и умственный труд. Эксплуатация средств автоматизации требует от обслуживающего персонала высокой техники квалификации.

1. Описание технологического процесса

Паровым котлом называется комплекс агрегатов, предназначенных для получения водяного пара. Этот комплекс служит для передачи тепла от продуктов сгорания топлива к воде и пару.

Исходным носителем энергии, наличие которого необходимо для образования пара из воды, служит природный газ, уголь различных месторождений, мазут.

Основными элементами рабочего процесса, осуществляемого в котельной установке, являются:

1) процесс горения топлива;

2) процесс теплообмена между продуктами сгорания или самим горящим топливом с водой;

3) процесс парообразования, состоящий из нагрева воды, ее испарения и нагрева полученного пара.

Для примера рассмотрим схему автоматизацию котла средней мощности БКЗ-35-39ФБ с факельным сжиганием топлива.

Во время работы в котловых агрегатах образуются два взаимодействующих друг с другом потока: поток рабочего тела и поток образующегося в топке теплоносителя.

В результате этого взаимодействия на выходе объекта получается пар заданного давления и температуры.

До поступления в котельный цех уголь проходит через дробильную установку, в которой измельчаются наиболее крупные куски. Затем топливо поступает на транспортеры сырого угля, с них топливо (бурый уголь) подается в бункера сырого угля котлового агрегата. Емкость бункера обеспечивает работу котла в течение нескольких часов. Топливо из бункеров самотеком выходит и поступает на питатели сырого угля, благодаря которым подается в угле размольную молоткового типа мельницу. В мельнице происходит окончательное измельчение угля, в мельнице уголь предварительно подогревается горячим воздухом, а также подогрев производится в пыле приготовительной установке, откуда уже пылевоздушная смесь поступает через шахты в вихревые горелки.

При поступлении в топочную камеру работающего котла пылеугольной смеси через вихревые горелки, а также воздуха происходит, прежде всего, их быстрое нагревание раскаленными топочными газами. Сначала испаряется оставшаяся в угольной смеси влага. При дальнейшем нагревании из топлива выделяются летучие компоненты, и происходит их воспламенение. Если летучих веществ в топливе много, то горение их обеспечивает дальнейший разогрев топлива и воздуха, и воспламенение остальной более инертной части топлива. Топливо сжигается факельным способом.

Воздух, совместно с которым вносится в топочную камеру измельченное твердое топливо (первичный воздух), составляет только часть воздуха необходимого для процесса горения. Остальной воздух (вторичный воздух) вдувается в топку таким образом, чтобы он смешивался с угольной смесью после воспламенения основной массы ее пылинок. При сжигании бурого угля первичный воздух, вводимый с угольной смесью составляет до 45 процентов от всего воздуха. Воздух нагнетается в топку с помощью вентилятора и предварительно нагревается в воздухоподогревателе до температуры 334 С.

Процесс теплообмена в котле идет через водогазонепроницаемые теплопроводные стенки, называющиеся поверхностью нагрева. Поверхности нагрева выполняются в виде труб. Внутри труб происходит непрерывная циркуляция воды, а снаружи они омываются горячими топочными газами или воспринимают тепловую энергию лучеиспусканием.

Образование пара в котловых агрегатах протекает с определенной последовательностью. Уже в экранных трубах начинается образование пара. Этот процесс протекает при больших температуре и давлении. С увеличением температуры интенсивность испарения возрастает. Жидкость, образующуюся при конденсации называют конденсатом. Она используется для охлаждения поверхностей металла в пароперегревателях.

Питание барабана котла осуществляется питательной водой, которая предварительно нагревается до температуры 104 С в экономайзере и подается в барабан котла с расходом 80 мі/ч.

Пар, образуемый в котловом агрегате, подразделяется на насыщенный и перегретый. Насыщенный пар в свою очередь делится на сухой и влажный. Циркуляция воды по трубам происходит за счет образования пара в обогреваемых трубах, так как плотность пароводяной смеси меньше чем водяной, поэтому происходит постоянный перетек воды в обогреваемые трубы по которым пароводяная смесь поднимается и в барабане котла образуется пар, который осушается находящимися внутри барабана паро-осушительными устройствами: сепарационными устройствами, циклонами, сепараторами, в которых происходит отделение влаги от пара.

Насыщенный пар из барабана под давлением 39 кгс/см поступает в пароперегреватель, где подогревается до нужной температуры 440С, за счет радиации факела и конвективного обогрева топочными газами, и поступает в паровую магистраль, в которой расход перегретого пара составляет 70 мі/ч.

Регулирование питания котельных агрегатов и регулирование давления в барабане котла главным образом сводится к поддержанию материального баланса между отводом пара и подачей воды. Параметром, характеризующим баланс, является уровень воды в барабане котла. Надежность работы котельного агрегата во многом определяется качеством регулирования уровня. При повышении давления, снижение уровня ниже допустимых пределов, может привести к нарушению циркуляции в экранных трубах, в результате чего произойдет повышение температуры стенок обогреваемых труб и их пережег.

Повышение уровня также ведет к аварийным последствиям, так как возможен заброс воды в пароперегреватель, что вызовет выход его из строя. В связи с этим, к точности поддержания заданного уровня предъявляются очень высокие требования. Качество регулирования питания также определяется равенством подачи питательной воды. Необходимо обеспечить равномерное питание котла водой, так как частые и глубокие изменения расхода питательной воды могут вызвать значительные температурные напряжения в металле экономайзера.

Барабанам котла с естественной циркуляцией присуща значительная аккумулирующая способность, которая проявляется в переходных режимах. Если в стационарном режиме положение уровня воды в барабане котла определяется состоянием материального баланса, то в переходных режимах на положение уровня влияет большое количество возмущений. Основными из них являются изменение расхода питательной воды, изменение парового съема котла при изменении нагрузки потребителя, изменение паровой производительности при изменении при изменении нагрузки топки, изменение температуры питательной воды.

Образовавшиеся в процессе горения дымовые газы отсасываются из топки дымососом. Попутно они проходят через поверхности нагрева обоих ступеней пароперегревателя, водяного экономайзера, воздухоподогревателя и удаляются при температуре 127 С через дымовую трубу в атмосферу.

Регулирование соотношения газ-воздух необходимо как чисто физически, так и экономически. Известно, что одним из важнейших процессов, происходящих в котельной установке, является процесс горения топлива. Химическая сторона горения топлива представляет собой реакцию окисления горючих элементов молекулами кислорода. Для горения используется кислород, находящийся в атмосфере. Воздух в топку подается в определенном соотношении с газом посредством дутьевого вентилятора. Соотношение газ-воздух примерно составляет 1,10.

При недостатке воздуха в топочной камере происходит неполное сгорание топлива. Не сгоревший газ будет выбрасываться в атмосферу, что экономически и экологически не допустимо. При избытке воздуха в топочной камере будет происходить охлаждение топки, хотя газ будет сгорать полностью, но в этом случае остатки воздуха будут образовывать двуокись азота, что экологически недопустимо, так как это соединение вредно для человека и окружающей среды.

Система автоматического регулирования разряжения в топке котла сделана для поддержания топки под наддувом, то есть чтобы поддерживать постоянство разряжения (примерно 4 мм. вод. ст.). При отсутствии разряжения пламя факела будет прижиматься, что приведет к обгоранию горелок и нижней части топки. Дымовые газы при этом пойдут в помещение цеха, что делает невозможным работу обслуживающего персонала.

В питательной воде растворены соли, допустимое количество которых определяется нормами. В процессе парообразования эти соли остаются в котловой воде и постепенно накапливаются. Некоторые соли образуют шлам - твердое вещество, кристаллизующееся в котловой воде. Более тяжелая часть шлама скапливается в нижних частях барабана и коллекторов.

Повышение концентрации солей в котловой воде выше допустимых величин может привести к уносу их в пароперегреватель. Поэтому соли, скопившиеся в котловой воде, удаляются непрерывной продувкой, которая в данном случае автоматически не регулируется.

Расчетное значение продувки парогенераторов при установившемся режиме определяется из уравнений баланса примесей к воде в парогенераторе. Таким образом, доля продувки зависит от отношения концентрации примесей в воде продувочной и питательной. Чем лучше качество питательной воды и выше допустимая концентрация примесей в воде, тем доля продувки меньше. А концентрация примесей в свою очередь зависит от доли добавочной воды, в которую входит, в частности, доля теряемой продувочной воды.

Сигнализация параметров и защиты, действующие на останов котла, физически необходимы, так как оператор или машинист котла не в силах уследить за всеми параметрами функционирующего котла. Вследствие этого может возникнуть аварийная ситуация. Например, при пуске воды из барабана, уровень воды в нем понижается, вследствие этого может быть нарушена циркуляция, и пережег труб донных экранов. Сработавшая без промедления защита, предотвратит выход из строя парогенератора. При уменьшении нагрузки парогенератора, интенсивность горения в топке снижается. Горение становится неустойчивым и может прекратиться. В связи с этим предусматривается защита по погашению факела.

Надежность защиты в значительной мере определяется количеством, схемой включения и надежностью используемых в ней приборов. По своему действию защиты подразделяются:

- действующие на останов парогенератора;

- снижение нагрузки парогенератора;

- выполняющие локальные операции.

2. Выбор средств автоматизации

Применение пневматических средств автоматизации на данном объекте не целесообразно, т. к., у них существует запаздывание, больше чем у электронных средств. Также пневматические средства имеют большую стоимость, по сравнению с электронными приборами. Они сложней при монтаже и обслуживании.

Данная категория помещения допускает установку электронных приборов. Они отличаются высокой точностью, быстродействием, легкостью монтажа и обслуживания, при условии взрывобезопасного исполнения всех датчиков, находящихся в цеху.

2.1 Средства измерения температуры

При выборе средств автоматического контроля, необходимо учитывать предельные значения температур, в диапазоне которых можно применять различные датчики температуры, а так же вид выходного сигнала.

В данном диапазоне предпочтение термопар, для измерения высоких температур. Выбираем термоэлектрический термометр ТХК-0292 (поз. 6-1). Выбор вида вторичного прибора зависит от вида термометра и градуированных характеристик прибора и термопары, которые должны совпадать. Вторичный регистрирующий и показывающий прибор ДИСК-250 (поз. 6-2) предназначен для измерения входных сигналов датчиков технологических параметров, регистрации измерений на дисковой диаграмме.

2.2 Средства измерения давления

Для контроля давления выбираем преобразователь САПФИР-22ДИ-2150 (поз. 2-2), подключенный через разделительный сосуд. Унифицированный токовый сигнал 0-5 мА с преобразователя поступает вторичный прибор А-100-2 (поз. 2-3).

2.3 Средства измерения расхода

Измерение и регулирование расхода осуществляется при помощи диафрагм ДКС-10-65 (поз. 1-2, 1-3) и весового устройства поступает на Сапфир22ДД 2420 (поз. 1-4) на регулирующий прибор РС29 34.3 с сигналом 0ч5мА (поз. 1-6).

2.4 Средства измерения уровня

Контроль уровня воды в барабане осуществляется при помощи преобразователя ДГД-Э (поз. 3-2) и преобразуется в унифицированный токовый сигнал 0-5 мА, который подается на вторичный прибор ДИСК-250 с ПИ законом регулирования и регистраций параметра на дисковой диаграмме (поз. 3-3).

2.5 Средства измерения яркости факела в топке котла

Для этих целей используется фотоэлемент ФД-250 в комплекте со вторичным сигнализирующим прибором ЛУЧ-1 (поз. 7-2). Этот параметр входит в систему аварийной защиты всей котельной системы. При этом закрываются все входные потоки закрываются (прекращается подача топлива и вторичного воздуха) и открываются выходные (паровая магистраль).

Конкретные типы средств автоматизации приведены в заказной спецификации на оборудование и материалы.

3. Расчет ротаметра

3.1 Определяем диаметр трубки D10 в месте деления шкалы для максимального расхода

D10 = 0,0171 + 0,01 *·0,25 = 0,0196.

3.2 Определяем высоту поднятия поплавка над сечением трубки, диаметр которого равен диаметру миделя поплавка

h0 - высота нулевой отметки, м.

3.3 Определяем высоту поднятия поплавка над оцифрованными сечениями трубки

Для автоматизации котлов паровых ДКВР, ДЕ, которые работа­ют на топливе газ/мазут, и водогрейных котлов ТВГ, КВ-Г, работаю­щих на природном газе, используются комплекты автоматического регулирования на базе системы «Контур» (рис 121, 122), автомати­ки безопасности и управления в щите типа Щ-К2 (Щ-К2У) (рис. 123). Схема системы автоматического регулирования «Контур» на паро­вых котлах ДКВР приведена на рис. 124.

Система «Контур» освоена Московским заводом тепловой авто­матики (МЗТА) в 1978 г. До этого времени МЗТА выпускал элект­ронно-гидравлическую систему «Кристалл».


Рис. 121. Лицевая панель регулятора, используемого в системе автоматики «Контур»


Рис. 122. Принципиальная схема автоматического регулирования

Система автоматики «Контур» предназначена для регулирования параметров технологического процесса котлов. Каждый автоматический регулятор имеет: датчик (первичный прибор) (Д); регулирующий прибор (усилитель); исполнительный механизм (ИМ); регулирующий орган (РО).

Датчик Д связан с регулируемым параметром и преобразует поступающий в него импульс в электрический сигнал. Датчик со­стоит из измерительного и электрического преобразователей. Изме­рительным преобразователем могут быть эластичная мембрана, манометрическая трубка и др.

Электрический преобразователь представляет собой дифференци­ально-трансформаторную катушку и стальной сердечник (рис. 125).

Датчик получает питание Uвх =12 (24) В от своего регулирую­щего прибора электрический сигнал II изменяет свое значение в зависимости от положения стального сердечника III.

Регулирующий прибор Р.25 с задатчиком осуществляет питание своего датчика, от которого поступает электрический сигнал Uвых, который сравнивается с заданным, задаваемым задатчиком, и при неравенстве и усилении разности электрических сигналов на выхо­де регулирующего прибора возникает усиленный электрический сигнал, который включает в работу исполнительный механизм МЭО.



Рис. 124. Схема системы автоматики «Контур» на паровых котлах ДКВР


Рис. 125. Схема дифференциально-транс­форматорного преобразователя: I — первичная обмотка дифференциально- трансформаторной катушки; II — вторичная обмотка диффсренциально-трансформатор- ной катушки; III — стальной сердечник; IV — эластичная мембрана измерительного преобразователя

Исполнительный механизм ИМ может быть гидравлическим типа ГИМ (рис. 126,127) (механизм использовался ранее в системе регу­лирования «Кристалл») и электрическим типа МЭО (механизм электрический одновращательный) (рис. 128).

Исполнительный механизм перемещает регулирующий орган РО. В зависимости от параметров, которые регулируются, регулирую­щим органом может быть: регулирующая заслонка (РЗ), направляю­щий аппарат дутьевого вентилятора (НАДВ), направляющий аппа­рат дымососа (НАД), регулирующий клапан (РК).

На паровых котлах устанавливаются следующие регуляторы:

  • регулятор давления пара в барабане котла;
  • регулятор расхода воздуха по заданному соотношению «газ-воз- дух»;
  • регулятор разрежения в топке; регулятор уровня воды в барабане котла.

На рис. 129, а-г показаны примеры соединения исполнительных механизмов с регулирующими органами.

Рис.126. Гидравлический исполнительный механизм ГИМ

Рис. 126. Гидравлический исполни­тельный механизм ГИМ: 1- блок управления; 2 — гидравлический сервомотор,

Рис. 127. Сервомотор исполни­тельного механизма ГИМ: 1 — шток; 2, 6 — уплотнение; 3 — крышка; 4 — цилиндр; 5 — пор­шень; 7 — стяжной болт

Рис. 128. Электрический исполнительный механизм модификации МЭО-1,6140 (МЭО-4/100): 1 — блок датчиков; 2 — упоры; 3 — гайка; 4 — штуцерный вход; 5 — штифт; 6 — махо­вик ручного привода; 7 — плита электродвигателя; 8 — конденсатор; 9 — тормоз; 10 — штепсельный разъем; 11 — рычаг; 12 — прокладка; 13 — винт заземления; 14 — редуктор; 15 — электродвигатель

Рис 129. Примеры соединения исполнительных механизмов с регулирующими органами

Рис. 129. Примеры соединения исполнительных механизмов с ре­гулирующими органами: а — с осевым направляющим аппаратом дутьевого вентилятора; б — с осе­вым направляющим аппаратом дымососа; в — с краном питательной воды; г — с топливным краном

Регулятор давления пара в барабане котла. Датчиком этого регулятора является манометр электрический дистанционный МЭД (рис. 130) и превращает изменение давления в барабане котла в элек­трический сигнал. Этот сигнал поступает в регулирующий прибор Р.25, сравнивается с заданным электрическим сигналом задатчика и в случае неравенства этих сигналов на выходе регулирующего при­бора Р.25 возникает усиленный электрический сигнал, включающий исполнительный механизм, который перемещает регулирующую заслонку РЗ на газопроводе перед горелками в сторону увеличения или уменьшения подачи газа.

Регулятор соотношения «газ-воздух». Этот регулятор имеет два датчика ДТ-2 (рис. 131), которые получают импульсы давления газа и воздуха на горелки. В этом случае на регулирующем приборе Р.25 уравниваются три сигнала: датчика давления газа Рт, датчика давле­ния воздуха Рв и задатчика регулирующей заслонки РЗ.

Например, при увеличении давле­ния газа, который определяет увеличе­ние его расхода, регулирующий при­бор Р.25 выдает команду исполнитель­ному механизму на включение и исполнительный механизм перемеща­ет лопатки осевого направляющего аппарата дутьевого вентилятора в сто­рону увеличения расхода воздуха.

Регулятор разрежения в топке. В зависимости от изменения подачи газа и воздуха в топку котла будет из­меняться разрежение вверху топки.

Датчиком разрежения является также датчика ДТ-2, который с изме­нением разрежения посылает электри­ческий сигнал на регулирующий при­бор Р.25., который сравнивает посту­пивший сигнал с заданным и в случае их неравенства посылает сигнал на им­пульсный механизм, воздействующий на направляющий аппарат дымососа, увеличивая или уменьшая разрежение.

Рис 131. Дифференционный тягомер ДТ-2

Рис. 131. Дифференционный тягомер ДТ-2: устройство тягомера; б-элек­трическая схема; 1 — гайка; 2 — ка­тушка дифференциально-транс­форматорного преобразователя; 3 — сердечник дифференциально- трансформаторного преобразова­теля; 4, 7 — штуцер; 5 — корпус; 6- мембрана; 8 — разделительная трубка

Рис 130. Электрический дистанционный манометр МЭД

Рис. 130. Электрический дис­танционный манометр МЭД: 1 — пружина; 2 — свободный ко­нец пружины; 3 — сердечник дифференционно-трансформаторного преобразователя

Регулятор уровня воды в барабане котла. Датчиком этого ре­гулятора является дифференционный манометр ДМ (рис. 132), ко­торый через уровнемерную колонку подсоединен к барабану котла. Перепад давления воды соответствует уровню в барабане котла и поступает на дифференциальный манометр. Сигнал от дифферен- циально-трансформаторной катушки манометра поступает на регу­лирующий прибор Р.25, где сравнивается с заданным, задаваемым задатчиком и в случае неравенства этих сигналов дает команду ис­полнительному механизму ИМ на открытие или прикрывание регу­лирующего клапана РК, установленного на питательной линии па­рового котла.

На водогрейных котлах устанавливаются: регулятор температуры воды на выходе из котла; регулятор соотношения «газ-воздух»; регулятор разрежения в топке.

Датчиками регулятора темпера­туры воды на выходе из котла явля­ются термометры сопротивления, которые измеряют температуру горя­чей воды и наружного воздуха. Дат­чики преобразуют температуру в электрический сигнал и подают на вход регулирующего прибора Р.25, где происходит сравнение с задан­ным и в случае неравенства сигналов регулирующий прибор Р.25 выдает команду исполнительному механиму ИМ на поворот регулирующей заслонки РЗ перед горелками в ту или иную сторону, увеличивая или уменьшая подачу газа. Регуляторы соотношения «газ- воздух» и разрежения работают аналогично регуляторам паровых котлов.

Так же для поддержания постоянного давления на вводах в котельную могут быть установлены регуляторы расхода и давления УРРД универсальные: УРРД, УРРД-2, УРРД-3.

Рис. 132. Дифференционный манометр ДМ: 1,6- крышки корпуса; 2,4- мембранные коробки; 3 — перегородка; 5 — ниппель; 7 и 15 — импульсные трубки; 8 — диффе- ренциалоно-трансформаторный преобразо­ватель; 9 — колпак; 10, 11, 12 — клапан; 13 — распределительная трубка; 14 — шток сердечника преобразователя; 16 — втулка регулирования нуля; 17 — контргайк

Источник: Тарасюк В.М. Эксплуатация котлов: Практическое пособие для оператора котельной, г. Москва, 2008 г.

Элементы рабочего процесса, осуществляемого в котельной установке. Схема конструкции парового котла. Описание схемы автоматизации объекта, монтажа и наладки системы автоматического регулирования. Расчет чувствительности системы управления подачей пара.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 03.09.2013
Размер файла 1,1 M

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1.1 Описание технологического процесса

1.2 Описание конструкции объекта

1.3 Обоснование необходимости контроля, регулирования и сигнализации технологических параметров

2. Специальная часть

2.1 Выбор средств автоматизации

2.2 Описание схемы автоматизации объекта

2.3 Описание щита КИПиА

2.4 Описание схемы внешних соединений

2.5 Описание схемы принципиальной

2.6 Описание монтажа и наладки системы автоматического регулирования

2.7 Заказная спецификация на оборудование

2.8 Спецификация на монтажные изделия и материалы

3. Исследовательская часть

3.1 Объект исследования

3.2 Расчет чувствительности системы управления подачей пара

3.3 Расчет системы автоматического регулирования температуры

4. Экономическая часть

4.1 Смета стоимости средств автоматизации

4.2 Расчет амортизационных отчислений

4.3 Расчет численности рабочих

4.4 Расчет годового фонда заработной платы специалистов

4.5 Расчет заработной платы

4.6 Смета эксплуатационных затрат

4.7 Расчет экономической эффективности САР

5. Безопасность жизнедеятельности и экология

5.1 Охрана труда

5.2 Меры защиты работников от воздействий вредных факторов

5.3 Мероприятия по охране окружающей среды

5.4 Расчет выбросов от котельной, работающей на природном газе

5.5 Безопасность в чрезвычайных ситуациях

Список использованных источников

паровой котел автоматизация

По уровню автоматизации теплоэнергетика занимает одно из ведущих мест среди других отраслей промышленности. Теплоэнергетические установки характеризуются непрерывностью протекающих в них процессов. При этом выработка тепловой и электрической энергии в любой момент времени должна соответствовать потреблению (нагрузке). Почти все операции на теплоэнергетических установках механизированы, а переходные процессы в них развиваются сравнительно быстро. Этим объясняется высокое развитие автоматизации в тепловой энергетике.

Автоматизация параметров дает значительные преимущества:

обеспечивает уменьшение численности рабочего персонала, т.е. повышение производительности его труда,

приводит к изменению характера труда обслуживающего персонала,

увеличивает точность поддержания параметров вырабатываемого пара,

повышает безопасность труда и надежность работы оборудования,

увеличивает экономичность работы парогенератора.

Автоматизация парогенераторов включает в себя автоматическое регулирование, дистанционное управление, технологическую защиту, теплотехнический контроль, технологические блокировки и сигнализацию.

Автоматическое регулирование обеспечивает ход непрерывно протекающих процессов в парогенераторе (питание водой, горение, перегрев пара и др.)

Дистанционное управление позволяет дежурному персоналу пускать и останавливать парогенераторную установку, а так же переключать и регулировать ее механизмы на расстоянии, с пульта, где сосредоточены устройства управления.

Теплотехнический контроль за работой парогенератора и оборудования осуществляется с помощью показывающих и самопишущих приборов, действующих автоматически. Приборы ведут непрерывный контроль процессов, протекающих в парогенераторной установке, или же подключаются к объекту измерения обслуживающим персоналом или информационно-вычислительной машиной. Приборы теплотехнического контроля размещают на панелях, щитах управления по возможности удобно для наблюдения и обслуживания.

Технологические блокировки выполняют в заданной последовательности ряд операций при пусках и остановках механизмов парогенераторной установки, а так же в случаях срабатывания технологической защиты. Блокировки исключают неправильные операции при обслуживании парогенераторной установки, обеспечивают отключение в необходимой последовательности оборудования при возникновении аварии.

Устройства технологической сигнализации информируют дежурный персонал о состоянии оборудования (в работе, остановлено и т.п.), предупреждают о приближении параметра к опасному значению, сообщают о возникновении аварийного состояния парогенератора и его оборудования. Применяются звуковая и световая сигнализация.

Эксплуатация котлов должна обеспечивать надежную и эффективную выработку пара требуемых параметров и безопасные условия труда персонала. Для выполнения этих требований эксплуатация должна вестись в точном соответствии с законоположениями, правилами, нормами и руководящими указаниями, в частности, в соответствии с «Правилами устройства и безопасной эксплуатации паровых котлов» Госгортехнадзора, «Правилами технической эксплуатации электрических станций и сетей», «Правилами технической эксплуатации теплоиспользующих установок и тепловых сетей» и др.

На основе указанных материалов для каждой котельной установки должны быть составлены должностные и технологические инструкции по обслуживанию оборудования, ремонту, технике безопасности, предупреждению и ликвидации аварий и т.п. Должны быть составлены технические паспорта на оборудование, исполнительные, оперативные и технологические схемы трубопроводов различного назначения. Знание инструкций, режимных карт работы котла и указанных материалов является обязательным для персонала. Знания обслуживающего персонала должны систематически проверяться.

Эксплуатация котлов производится по производственным заданиям, составляемым по планам и графикам выработки пара, расхода топлива, расхода электроэнергии на собственные нужды, обязательно ведется оперативный журнал, в который заносятся распоряжения руководителя и записи дежурного персонала о работе оборудования, а так же ремонтную книгу, в которую записывают сведения о замеченных дефектах и мероприятиях по их устранению.

Должны вестись первичная отчетность, состоящая из суточных ведомостей по работе агрегатов и записей регистрирующих приборов и вторичная отчетность, включающая обобщенные данные по котлам за определенный период. Каждому котлу присваивается свой номер, все коммуникации окрашиваются в определенный условный цвет, установленный ГОСТом. Установка котлов в помещении должна соответствовать правилам Госгортехнадзора, требованиям техники безопасности, санитарно-техническим нормам, требованиям пожарной безопасности.

1.1 Описание технологического процесса

Паровым котлом называется комплекс агрегатов, предназначенных для получения водяного пара. Этот комплекс состоит из ряда теплообменных устройств, связанных между собой и служащих для передачи тепла от продуктов сгорания топлива к воде и пару. Исходным носителем энергии, наличие которого необходимо для образования пар из воды, служит топливо.

Основными элементами рабочего процесса, осуществляемого в котельной установке, являются:

1)процесс горения топлива,

2)процесс теплообмена между продуктами сгорания или самим горящим топливом с водой,

3)процесс парообразования, состоящий из нагрева воды, ее испарения и нагрева полученного пара.

Во время работы в котлоагрегатах образуются два взаимодействующих друг с другом потока: поток рабочего тела и поток образующегося в топке теплоносителя.

В результате этого взаимодействия на выходе объекта получается пар заданного давления и температуры.

Одной из основных задач, возникающей при эксплуатации котельного агрегата, является обеспечение равенства между производимой и потребляемой энергией. В свою очередь процессы парообразования и передачи энергии в котлоагрегате однозначно связаны с количеством вещества в потоках рабочего тела и теплоносителя.

Горение топлива является сплошным физико-химическим процессом. Химическая сторона горения представляет собой процесс окисления его горючих элементов кислородом, проходящий при определенной температуре и сопровождающийся выделением тепла. Интенсивность горения, а так же экономичность и устойчивость процесса горения топлива зависят от способа подвода и распределения воздуха между частицами топлива. Условно принято процесс сжигания топлива делить на три стадии: зажигание, горение и дожигание. Эти стадии в основном протекают последовательно во времени, частично накладываются одна на другую.

Расчет процесса горения обычно сводится к определению количества воздуха в м3,необходимого для сгорания единицы массы или объема топлива количества и состава теплового баланса и определению температуры горения.

Значение теплоотдачи заключается в теплопередаче тепловой энергии, выделяющейся при сжигании топлива, воде, из которой необходимо получить пар, или пару, если необходимо повысить его температуру выше температуры насыщения. Процесс теплообмена в котле идет через водогазонепроницаемые теплопроводные стенки, называющиеся поверхностью нагрева. Поверхности нагрева выполняются в виде труб. Внутри труб происходит непрерывная циркуляция воды, а снаружи они омываются горячими топочными газами или воспринимают тепловую энергию лучеиспусканием. Таким образом, в котлоагрегате имеют место все виды теплопередачи: теплопроводность, конвекция и лучеиспускание. Соответственно поверхность нагрева подразделяется на конвективные и радиационные. Количество тепла, передаваемое через единицу площади нагрева в единицу времени носит название теплового напряжения поверхности нагрева. Величина напряжения ограничена, во-первых, свойствами материала поверхности нагрева, во-вторых, максимально возможной интенсивностью теплопередачи от горячего теплоносителя к поверхности, от поверхности нагрева к холодному теплоносителю.

Интенсивность коэффициента теплопередачи тем выше, чем выше разности температур теплоносителей, скорость их перемещения относительно поверхности нагрева и чем выше чистота поверхности.

Образование пара в котлоагрегатах протекает с определенной последовательностью. Уже в экранных трубах начинается образование пара. Этот процесс протекает при больших температуре и давлении. Явление испарения заключается в том, что отдельные молекулы жидкости, находящиеся у ее поверхности и обладающие высокими скоростями а, следовательно, и большей по сравнению с другими молекулами кинетической энергией, преодолевая силовые воздействия соседних молекул, создающее поверхностное натяжение, вылетают в окружающее пространство. С увеличением температуры интенсивность испарения возрастает. Процесс обратный парообразованию называют конденсацией. Жидкость, образующуюся при конденсации, называют конденсатом. Она используется для охлаждения поверхностей металла в пароперегревателях.

Пар, образуемый в котлоагрегате, подразделяется на насыщенный и перегретый. Насыщенный пар в свою очередь делится на сухой и влажный. Так как на теплоэлектростанциях требуется перегретый пар, то для его перегрева устанавливается пароперегреватель, в данном случае ширмовой и конъюнктивный, в которых для перегрева пара используется тепло, полученное в результате сгорания топлива и отходящих газов. Полученный перегретый пар при температуре Т=540 С и давлении Р=100 атм. идет на технологические нужды.

1.2 Описание конструкции объекта

Паровые котлы типа ДЕ паропроизводительностью 10 т/ч, с абсолютным давлением 1,4 МПа (14 кгс/см2) предназначены для выработки насыщенного или перегретого пара, используемого для технологических нужд промышленных предприятий, на теплоснабжение систем отопления и горячего водоснабжения.

Котлы двухбарабанные вертикально-водотрубные выполнены по конструктивной схеме “Д”, характерной особенностью которой является боковое расположение конвективной части котла относительно топочной камеры.

Основными составными частями котлов являются верхний и нижний барабаны 1,конвективный пучок и образующие топочную камеру 2 левый топочный экран (газоплотная перегородка), правый топочный экран, трубы экранирования фронтальной стенки топки и задний экран.

Снизу в топку подается нужный для сгорания топлива воздух посредством дутьевых вентиляторов 3.Процесс горения топлива протекает при высоких температурах, поэтому экранные трубы котла воспринимают значительное количество тепла путем излучения.

Продукты сгорания топлива, называемые иначе газами , поступают в котельные газоходы , при этом обогревается поверхность пароперегревателя 4, омывают трубы экономайзера 6, в котором происходит подогрев питательной воды до температуры, близкой к 200° С, поступающей в барабаны котла 1.Далее дымовые газы проходят в дымоход 5 и поступают в воздухоподогреватель7.Из него газы через дымовую трубу выходят в атмосферу. Вода в котел подается по трубопроводу 9, газ-трубопроводу10.Пар из барабана котла, минуя пароперегреватель 4, поступает на паропровод 11.

Одним из важнейших показателей конструкции котлоагрегата является его циркуляционная способность. Равномерная и интенсивная циркуляция воды и паровой смеси способствует смыванию со стены пузырьков пара и газа, выделяющихся из воды, а так же препятствует отложению на стенках накипи, что в свою очередь обеспечивает невысокую температуру стенок(200-400 С), ненамного превышающую температуру насыщения и еще не опасную для прочности котельной стали. Паровой котел ДЕ -10-14 Г принадлежит к котлам естественной циркуляцией.

Схема конструкции объекта

1.3 Обоснование необходимости автоматизации технологических параметров

Регулирование питания котельных агрегатов и регулирование давления в барабане котла главным образом сводится к поддержанию материального баланса между отводом пара и подачей воды. Параметром, характеризующим баланс, является уровень воды в барабане котла. Надежность работы котельного агрегата во многом определяется качеством регулирования уровня. При повышении давления, снижение уровня ниже допустимых пределов, может привести к нарушению циркуляции в экранных трубах, в результате чего произойдет повышение температуры стенок обогреваемых труб, и их пережег.

Повышение уровня также ведет к аварийным последствиям, так как возможен заброс воды в пароперегреватель, что вызовет выход его из строя. В связи с этим, к точности поддержания заданного уровня предъявляются очень высокие требования. Качество регулирования питания также определяется равенством подачи питательной воды. Необходимо обеспечить равномерное питание котла водой, так как частые и глубокие изменения расхода питательной воды могут вызвать значительные температурные напряжения в металле экономайзера.

Барабанам котла с естественной циркуляцией присуща значительная аккумулирующая способность, которая проявляется в переходных режимах. Если в стационарном режиме положение уровня воды в барабане котла определяется состоянием материального баланса, то в переходных режимах на положение уровня влияет большое количество возмущений. Основными из них являются изменение расхода питательной воды, изменение паросъема котла при изменении нагрузки потребителя, изменение паропроизводительности при изменении при изменении нагрузки топки, изменение температуры питательной воды.

Регулирование соотношения газ-воздух необходимо как чисто физически, так и экономически. Известно, что одним из важнейших процессов, происходящих в котельной установке, является процесс горения топлива. Химическая сторона горения топлива представляет собой реакцию окисления горючих элементов молекулами кислорода. Для горения используется кислород, находящийся в атмосфере. Воздух в топку подается в определенном соотношении с газом посредством дутьевого вентилятора. Соотношение газ-воздух примерно составляет 1.10. При недостатке воздуха в топочной камере происходит неполное сгорание топлива. Не сгоревший газ будет выбрасываться в атмосферу, что экономически и экологически не допустимо. При избытке воздуха в топочной камере будет происходить охлаждение топки, хотя газ будет сгорать полностью, но в этом случае остатки воздуха будут образовывать двуокись азота, что экологически недопустимо, так как это соединение вредно для человека и окружающей среды.

Система автоматического регулирования разряжения в топке котла сделана для поддержания топки под наддувом, то есть чтобы поддерживать постоянство разряжения (примерно 4мм. вод. ст.). При отсутствии разряжения пламя факела будет прижиматься, что приведет к обгоранию горелок и нижней части топки. Дымовые газы при этом пойдут в помещение цеха, что делает невозможным работу обслуживающего персонала.

В питательной воде растворены соли, допустимое количество которых определяется нормами. В процессе парообразования эти соли остаются в котловой воде и постепенно накапливаются. Некоторые соли образуют шлам - твердое вещество, кристаллизующееся в котловой воде. Более тяжелая часть шлама скапливается в нижних частях барабана и коллекторов.

Повышение концентрации солей в котловой воде выше допустимых величин может привести к уносу их в пароперегреватель. Поэтому соли, скопившиеся в котловой воде, удаляются непрерывной продувкой, которая в данном случае автоматически не регулируется. Расчетное значение продувки парогенераторов при установившемся режиме определяется из уравнений баланса примесей к воде в парогенераторе. Таким образом, доля продувки зависит от отношения концентрации примесей в воде продувочной и питательной. Чем лучше качество питательной воды и выше допустимая концентрация примесей в воде, тем доля продувки меньше. А концентрация примесей в свою очередь зависит от доли добавочной воды, в которую входит, в частности, доля теряемой продувочной воды.

Сигнализация параметров и защиты, действующие на останов котла, физически необходимы, так как оператор или машинист котла не в силах уследить за всеми параметрами функционирующего котла. Вследствие этого может возникнуть аварийная ситуация. Например, при упуске воды из барабана, уровень воды в нем понижается, вследствие этого может быть нарушена циркуляция и вызван, пережег труб донных экранов. Сработавшая без промедления защита, предотвратит выход из строя парогенератора. При уменьшении нагрузки парогенератора, интенсивность горения в топке снижается. Горение становится неустойчивым и может прекратиться. В связи с этим предусматривается защита по погашению факела.

Надежность защиты в значительной мере определяется количеством, схемой включения и надежностью используемых в ней приборов. По своему действию защиты подразделяются на действующие, на останов парогенератора; снижение нагрузки парогенератора; выполняющие локальные операции.

Читайте также: